### Subtracting Fractions − When the denominator is the same

The denominator remains the same. Just add the numerators and maybe write the fraction in its simplest form

- Example 1.
^{4}/_{5}−^{2}/_{5}=^{2}/_{5} - Example 2.
^{5}/_{10}−^{2}/_{10}=^{3}/_{10} - Example 3.
^{6}/_{7}−^{2}/_{7}=^{4}/_{7} - Example 4.
^{1}/_{3}−^{2}/_{3}= −^{1}/_{3} - Example 5. 2
^{3}/_{4}− 1^{1}/_{4}

(a) | Convert the mixed numbers to top heavy fractions |

2 ^{3}/_{4} − 1 ^{1}/_{4} = ^{11}/_{4} − ^{5}/_{4} | |

(b) | Subtract the top heavy fractions and then simplify |

^{11}/_{4} − ^{5}/_{4} = ^{6}/_{4} = ^{3}/_{2} = 1 ^{1}/_{2} |

Note: for a recap on simplifying fractions refer to Fractions - simplify

Note: for a recap on converting mixed numbers to top heavy fractions

refer to Fractions - convert mixed numbers to top heavy

Note: for a recap on converting top heavy fractions to mixed numbers

refer to Fractions - convert top heavy to mixed numbers